
 1

Introduction to Ceph

Or Building an Object Store in 5 Parts

http://openwest.dev-zero.net/intro-to-ceph.odp
http://openwest.dev-zero.net/intro-to-ceph.pdf

 2

Let’s build a hypothetical object store

 3

First, a definition

Object

Sequence of Bytes

Has a Name

Optionally some extra attributes

Very much like a File

No directory hierarchy

 4

Requirements

● Data can be written
● Data can be read
● Data should be distributed

– Spread across multiple storage locations

● Data should be fault tolerant
– Handle failures and automatically recover

● Data should be consistent
– Different data is a bad thing

 5

Part I : Objects and Storage Servers

 6

Server 1

Server 2

Server 3

Server 4

Notes.txt

If its randomly
distributed, how do you
know where the data is?

Randomly choose server.
Let’s pick 2 & 4.

 7

Problem 1

● Need a way to know where the data is stored so we can read it

Otherwise, our storage system is not better than

cat Notes.txt > /dev/null && rm Notes.txt

 8

Problem 1

● Multiple possible solutions
1) Use something else to store Object→Server mappings. Used by

some distributed systems. Adds an extra operation to each read and
write.

2) Use an attribute of the Object and do some math. Can use Object
name, Object contents, or combination of both. Probably going to use
some kind of hash function.

S = md5sum(name) % NumServers

 9

Part II : Objects mapped using hashes

 10

Server 1

Server 2

Server 3

Server 4

Notes.txt

md5sum(‘Notes.txt’) % 4 = 0
Increment for second copy

 11

Problem 2

● Recovery operations are painful
– What objects were on a failed server?
– Which objects are degraded?

● Adding or removing servers makes locations for previously
stored objects invalid
– Have to potentially move a lot of data

Solution: Create a logical ‘bucket,’ Map objects to buckets, then
map buckets to Servers

 12

Part III : Object Buckets

 13

Server 1

Server 2

Server 3

Server 4

Notes.txt

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Bucket 5

Bucket 6

md5sum(‘Notes.txt’) % 6 = 2

Buckets Map to Servers

How to map
buckets to servers?

 14

Several potential ways but we’ll put that on hold for a minute

http://www.reactiongifs.com/magic-3/

 15

Problem 3

● How is the state of the environment known?
● What servers are running and available?
● Which buckets are consistent? Which are missing a member?

Solution: Use a distributed consensus algorithm and some
additional servers to keep state

 16

Part IV : Distributed Consensus

 17

Server 1

Server 2

Server 3

Server 4

Notes.txt

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Bucket 5

Bucket 6

md5sum(‘Notes.txt’) % 6 = 2
Manager

Manager

Manager

 18

Problem 4

● 1 global name space quickly leads to object collisions
● What if different storage policies are needed for different types

of data?

Solution: Use multiple groups of buckets. Objects are stored in a
group specified by the client.

 19

Part V : Bucket Groups

 20

Server 1

Server 2

Server 3

Server 4

Notes.txt

Manager

Manager

Manager

The basics of our
hypothetical object
store are now in place

Bucket Group 1

Bucket Group 2

Notes.txt

 21

Translation to Ceph

Hypothetical Object Store Ceph

Object Object

Server Object Storage Daemon (OSD)

Bucket Placement Group (PG)

Manager Monitor (Mon)

Bucket Group Pool

 22

Translation to OpenStack Swift?

Hypothetical Object Store Ceph Swift

Object Object Object

Server Object Storage Daemon (OSD) Object Server

Bucket Placement Group (PG) Partitions

Manager Monitor (Mon) The Ring

Bucket Group Pool Storage Policies

Not exactly direct translations to Swift and crude approximation. I
haven’t looked at it seriously in 7 years and could be wrong on current
architecture. Author assumes no responsibility for incorrectness.

 23

Ceph Specifics

● RADOS – Reliable, Autonomic, Distributed Object Store
– The Ceph equivalent of the Hypothetical Object Store we built
– http://ceph.com/papers/weil-rados-pdsw07.pdf

● CRUSH – Controlled Replication Under Scalable Hashing
– The magic for mapping to a Placement Group to a set of OSDs
– Allows for OSDs of different size and is location aware

● Region, Datacenter, Room, Row, Rack, Chassis, Host

– Rulesets define storage requirements
● i.e. 3 copies where each copy is in a different rack

– http://ceph.com/papers/weil-crush-sc06.pdf

 24

Ceph Architecture

http://docs.ceph.com/docs/jewel/architecture/

Object
Store

Clients

 25

Ceph Clients

● Using the object store requires a client that can talk the protocol
and semantics of the object store.

● Couple of helper libraries and applications to make that simpler
● librados – C Library that talks native Ceph details. Bindings for

other languages.
● Radosgw – S3 and Swift like REST based API

– See http://docs.ceph.com/docs/jewel/radosgw/s3/ and
http://docs.ceph.com/docs/jewel/radosgw/swift/ for API compatibility

http://docs.ceph.com/docs/jewel/radosgw/s3/
http://docs.ceph.com/docs/jewel/radosgw/swift/

 26

Ceph Clients

● RBD – RADOS Block Device. Virtual disk abstraction that’s
useful for Virtual Machines and other things.
– Comes in 2 forms. krbd and librbd.
– krbd is the mainline Linux kernel client. Allows for access to rbds are

block devices on any system that can talk to the cluster. Slower
development pace and doesn’t support all RBD features.

– librbd is used by user space applications such as qemu, rbd-nbd, or
LIO-TCM.

● CephFS – POSIX Filesystem abstraction. Requires additional
Metadata Server.
– Finally considered production ready with limitations

 27

Demo

 28

Status and Information (Jewel and older)

mike@ceph1:~$ sudo ceph status
 cluster 31073bfc-9a63-4141-a6b0-50d50f8b33a0
 health HEALTH_OK ← Overall Cluster Health
 monmap e3: 3 mons at
{ceph1=172.16.0.11:6789/0,ceph2=172.16.0.12:6789/0,ceph3=172.16.0.
13:6789/0} ← List of monitors
 election epoch 10, quorum 0,1,2 ceph1,ceph2,ceph3
 osdmap e109: 8 osds: 8 up, 8 in ← Number of OSDs and states
 flags sortbitwise
 pgmap v8982: 128 pgs, 9 pools, 6544 bytes data, 183 objects
 337 MB used, 119 GB / 119 GB avail
 128 active+clean ← Status of Placement Groups

 29

Status and Information (Luminous and newer)

mike@ceph1:~$ sudo ceph status
 cluster:
 id: 8a5fa553-f2f3-4181-8675-b617e982e259
 health: HEALTH_OK

 services:
 mon: 3 daemons, quorum ceph5,ceph6,ceph7
 mgr: ceph5(active), standbys: ceph7, ceph6
 osd: 4 osds: 4 up, 4 in

 data:
 pools: 3 pools, 96 pgs
 objects: 39.21k objects, 151GiB
 usage: 450GiB used, 3.16TiB / 3.60TiB avail
 pgs: 96 active+clean

 30

Status and Information

● ceph health [detail] #Additional health information
● ceph osd tree #Locations of OSDs in the CRUSH maps
● ceph osd find <osd number> #Show location of OSD
● ceph osd map <pool> <object name> #Show

Placement Group and OSDs that object maps to

 31

Direct Object Access - CLI

● rados put <object name> <infile> #Write an Object.
● rados get <object name> <outfile> #Read an Object.
● rados ls #List all Objects in a Pool. Can take a long time.
● rados listomapvals <object name> #List attributes and

values associated with object

 32

RBD

● rbd create --size <size> <image name> #Create RBD
● rbd map <image name> #Connect RBD image to host kernel
● rbd unmap /dev/rbd<number> #Disconnect RBD

● Qemu: -drive file=rbd:<pool>/<rbdname>
● libvirt <disk type='network' device='disk'>

 <driver name='qemu' type='raw' cache='writeback'/>
 <source protocol='rbd' name='$POOL/$RBD_NAME'>
 <host name='172.16.0.11' port='6789'/>
 <host name='172.16.0.12' port='6789'/>
 <host name='172.16.0.13' port='6789'/>
 </source>
 <target dev='vda' bus='virtio'/>
</disk>

 33

RBD

● rbd-nbd
– Allows for using the user-space RBD libraries that have more features than

the kernel RBD client
– Translates between Network Block Device protocol and Ceph RBD
– `rbd-nbd map <pool>/<rbd name>`
– `rbd-nbd unmap /dev/nbd#`

● iSCSI gateway
– Uses Linux-LIO + TCM Userspace app
– 2nd implementation in STGT. Older and probably deprecated.

 34

Radosgw

● s3cmd
– Set access_key and secret_key in s3cmd.conf
– Set host_base and host_bucket to name or IP of RGW
– `s3cmd -c /path/to/s3cmd.conf ls`

– `s3cmd -c /path/to/s3cmd.conf put /path/to/file s3://BUCKET`

– `s3cmd -c /path/to/s3cmd.conf get s3://BUCKET/file /path/to/file`

● Duplicity
– Put S3 credentials in /etc/boto.cfg
– `duplicity /path/to/save s3://radosgw.ip.fqdn/BUCKET`
– `duplicity list-current-files s3://radowgw.ip.fqdn/BUCKET`

 35

Questions?

 36

Extras

● Building a Cluster
– Use reliable and known hardware. Do some math on sizing and

capacity in advance.
– Don’t bother with hardware RAID for OSDs. Run one daemon per

individual hard disk. Ceph handles the redundancy.
– Know your use case. While some things fit nicely into Ceph, some

workloads might be better suited by another solution.

 37

Resources

● http://docs.ceph.com ← Good once you know your way around
● https://www.youtube.com/watch?v=I2aTsugXHEQ ← LCA 2014

talk by Sage. I find his example of using Ceph as a email
storage system to be intriguing.

● https://www.sebastien-han.fr/blog/ ← Blog with lots of useful
information especially in the context of Ceph with OpenStack

http://docs.ceph.com/
https://www.youtube.com/watch?v=I2aTsugXHEQ
https://www.sebastien-han.fr/blog/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

